Manual Wheelchair Guide

A comprehensive introduction to optimizing manual mobility for client function

Purpose of this Guide

One of the greatest barriers to the provision of seating and wheeled mobility is first identifying the need and then documenting and justifying that need for equipment. This guide is meant to be a helpful resource to healthcare professionals to:

- Identify the need for manual mobility
- Translate the need for a mobility device to the most appropriate wheelchair model and options
- Understand how to effectively document and justify the equipment chosen and meet the necessary requirements
- Understand what the components of a complex rehab technology (CRT) manual wheelchair are and how to appropriately measure for optimal configuration

Look for these info boxes throughout the guide.
 They include quick tips or takeaways for that section.

This guide was created using process and funding guidelines for the United States including Medicare coding terminology. Therefore, some terms such as K0005 and Ultra Lightweight Manual Wheelchair, are considered to be interchangeable throughout.

This guide is meant to be a comprehensive introduction to manual mobility. For advanced learning opportunities, visit the education tab at *permobil.com*

Table of Contents

Ŀ

Getting started	Manual Wheelchair Universal Terms	1
	Common Challenges	2
The process	Identifying the Need	3
	Qualifying for a Manual Wheelchair	4
	Manual Wheelchair Justification	5 - 6
DME vs CRT equipment	Understanding DME & CRT Equipment	7
	DME	8 - 10
	CRT	11 - 14
	Manual Wheelchair Comparison Chart	15 - 16
	DME, Short-Term Use Wheelchairs	17 - 18
	CRT, Full-Time Use Wheelchairs	19 - 20
	CRT Ultra Lightweight Manual Wheelchairs	21 - 22
	Tips for Justifying a CRT MWC	23 - 24
(0005 Configuration	E1161 Manual Tilt-N-Space Configuration	25
	K0005 Ultra lightweight MWC Configuration	26
	Measuring for a CRT MWC	28
	Seat-to-floor height	27 - 30
	Seat slope	31 - 32
	Ergo seat	33 - 34
	Foot support-to-seat length	35
	Front frame angle	36
	Seat width	37
	Front seat width	38
	Footrest width	39
	Seat sling depth	40
	Frame depth	41
	Seat back height	42
	Seat-to-back angle	43
	Position of the rear wheel axle	44
	Horizontal axle positioning	45 - 46
	Vertical axle positioning	47
	MWC propulsion	48
	Propulsion patterns	49
	Propulsion efficiency	50
	Rear wheel options	51
	Rear wheel camber	52
	Caster options	53 - 54
	Additional K0005 Ultra Lightweight MWC options	55
IWC POWER ASSIST	Power Assist	56
	Hub-Mounted Power Assist	57
	Rear-Mounted Power Assist	58
	Front-Mounted Power Assist	59
CONCLUSION		61
QUICK GUIDE - MWC FIT		62 - 66
GLOSSARY		67
REFERENCES		68

Manual Wheelchair Universal Terms

-1

Common Challenges

wheelchairs available

Despite wanting what is best for our clients, the above factors may prevent us from doing it.

Identifying the Need____

HOW DO I KNOW IF MY PATIENT NEEDS A WHEELCHAIR?

Consider your patient's quality of life. Document any of the indicators below to justify the need.

- 1. Patient is non-ambulatory
- Demonstrates decreased safety with ambulation or is at risk for falls within the home. Ask about history of falls; perform an objective balance assessment, e.g. BERG Balance Scale (BBS), Dynamic Gait Index (DGI), Timed Up and Go (TUG)
- **3.** Requires assistance for ambulation within the home and wheeled mobility would allow independence
- **4.** Requires increased time for ambulation within the home. Perform a gait speed test; think about performing ADLs in a reasonable amount of time
- Unable to consistently ambulate throughout the day in the home, which affects their ADLs. Look at a 24-hour period
- **6.** Their current wheelchair is in disrepair or not meeting their needs for mobility or postural support

Here are scenarios where wheeled mobility could significantly increase a person's quality of life:

- They can ambulate but are at high risk of falls
- They have frequent urge incontinence because they are unable to get to the restroom on time
- Their O₂ saturations drop below or heart rate increases above a safe range with ambulation
- Their day consists of sitting in a recliner and transferring to a bedside commode as needed
- Nature of their diagnosis, over-fatigue is contraindicated, and a WC is required in order to avoid exacerbation of symptoms

Qualifying for a Manual Wheelchair

NOW THAT I KNOW MY CLIENT WILL BENEFIT FROM A WHEELCHAIR, WHAT DO I DO?

Wheelchair selection is not diagnosis specific and requires evidence of medical necessity. Step one is a physician's visit with notes that state:

- Mobility related diagnosis e.g. hemiplegia due to stroke
- Symptoms that affect mobility
- Mobility Related ADLs (MRADLs) affected by the mobility limitation
- Current ambulation limitations. Why they cannot ambulate at a safe, functional level

Then, a referral is made to PT/OT and the fun begins! It becomes our task to evaluate the client and determine what level of wheeled mobility they need to lead safe, functional lives.

The documentation must match from MD to PT/OT! If the MD says they can ambulate or if a diagnosis code does not match, it will be a problem.

Manual Wheelchair Justification

HOW DO I JUSTIFY MY CLIENT'S NEED FOR A WHEELCHAIR?

Prior to choosing the type of wheelchair, the PT/OT needs to justify the need for a manual wheelchair.

Ask yourself the following questions, and the answers will begin to guide you towards the right wheelchair:

1. Does your client have a mobility limitation that significantly impairs his/her ability to participate in one or more MRADLs in the home?

Does it prevent them from doing MRADLs?

Are they unsafe to perform MRADLs?

Can they perform MRADLs in a reasonable time frame?

- 2. Can the mobility limitation be resolved by a cane or walker?
- 3. Do they have the desire or capability to propel a wheelchair? If they can't propel, do they have a willing caregiver?
- 4. Does the client's home have the space/layout for functional wheelchair use?

Measure doorways and ask your ATP for required measurements to get through doorways based on the wheelchair model selected

Measure the time it takes to propel the WC to the bathroom from someplace else in the home

 Always document how the right equipment allows them to perform routine tasks more independently.

WHAT IF YOUR CLIENT ALREADY USES A WHEELCHAIR?

Keep in mind the 5-year lifetime rule. Many insurers will not pay for new equipment unless the current equipment is more than 5 years old or there has been a significant change in medical condition.

If your client uses a wheelchair already, ask the following:

- 1. How is their posture in their wheelchair?
- 2. Do they have pain when using their wheelchair?
- 3. Can they effectively propel their wheelchair?
- 4. Are they independent in their ADLs?
- 5. How old is their wheelchair?
- 6. Was it originally ordered for them, or did they get it from someone else?
- 7. Consider this: a K0004 or lower wheelchair can be a rental. Investigate to find out, is their wheelchair being rented? If so, has it been rented for less than a year? If it has been rented for less than a year, keep in mind that it could be replaced with a different one. *More information on page 24.*

Just because a person already has a wheelchair, it doesn't mean it's the most appropriate one for them!

Understanding DME & CRT Equipment

MY CLIENT HAS THE NEED, BUT HOW DO I GO ABOUT RECOMMENDING THE RIGHT EQUIPMENT FOR THEM?

Let's start with the basics. When it comes to seating and wheeled mobility, products are divided into two groups:

Durable Medical Equipment (DME) and Complex Rehabilitation Technology (CRT).

Clients will qualify for certain equipment based on the severity or complexity of their condition. Coverage criteria for CRT MWCs is based on function. Lesser products must have been tried and ruled out in documentation.

"CRT products include medically necessary and individually configured manual and power wheelchairs, seating and positioning systems, and other adaptive equipment such as standing devices and gait trainers. This specialized equipment requires evaluation, configuration, fitting, adjustment, or programming to meet the individual's medical needs and maximize function and independence.

CRT products must be provided by individuals who are certified, registered or otherwise credentialed by recognized organizations in the field of CRT and who are employed by a business specifically accredited by a CMS deemed accreditation organization to provide CRT."

"National Coalition for Assistive and Rehab Technology." NCART, 2019, www.ncart. us/.

DME

DME equipment must meet the following criteria:

- Used for a medical purpose
- Used in the home
- Able to withstand repeated use
- Typically useful for someone who is sick, injured, or disabled

WHO MIGHT BE AN APPROPRIATE USER FOR DME MOBILITY EQUIPMENT?

The list below can help you identify if your client's mobility needs might be met by a DME wheelchair:

- Short-term mobility needs (e.g. temporary limitations post-surgery, fracture, or other medical condition)
- Sits in the wheelchair for short periods of time (e.g. for transport pushed by someone else)
- Has limited/no need for positioning support or adjustment beyond that provided by an appropriate seat cushion or back support
- Does not have a postural deformity and is at minimal to no risk for developing one
- Sits in "standard" dimensions without compromise
- Has normal tone or minimal tonal abnormalities
- Has good sitting balance
- Does not have pain with sitting
- Has a non-progressive condition

Medicare requirements for DME equipment:

- Physician order and recent exam documenting need for mobility device
- No PT/OT evaluation or ATP involvement is required
- · Specific justification of the product may come from physician or therapist
- On-site home evaluation is not required (but you should always conduct one if you are involved)

? DOES THAT MEAN THAT TYPICALLY CLIENTS WITHOUT A SERIOUS INJURY OR CONDITION SHOULD ONLY NEED DME EQUIPMENT?

Definitely not. Go back over the list of qualities that a DME wheelchair user should have. With your client in mind, if you answer "no" or "not really" to <u>ANY</u> of those traits, they may benefit from more advanced equipment.

The populations below (but not limited to) have traditionally been provided with standard DME equipment. This does not mean that it is actually appropriate for them.

Elderly clients

• Someone with a low activity level

Bariatric individuals

Clients dependent in mobility

Always consider best clinical practice when dealing with **ANY** population and fight to provide what is most clinically appropriate. Many of these and other individuals might actually benefit from:

- A lighter weight and optimally configured wheelchair to increase and/or allow their ability to propel and independently perform ADLs
- Adjustability in their seating system to help maintain posture, prevent deformities, and decrease pain
- Individualized sizing to increase function, mobility, skin protection, and sitting tolerance
- · Ability to tilt-in-space to assist with posture, position, and pressure relief

An appropriate wheelchair that is configured, adjusted, and uniquely fit to them can increase independence, activity level, and quality of life for more than just the individual who is already active and independent.

★ Remember the 5-year rule and consider their prognosis to ensure you are meeting their needs over time.

The Process of Getting a DME Manual Wheelchair

Client is a non-ambulator or a non-functional ambulator.

Based on condition and prognosis, the client will benefit from a wheelchair for short-term use. Request an order from the physician.

Contact the DME company to have the wheelchair delivered. Remember a cushion should be used with ANY wheelchair.

WHAT IF MY CLIENT ALREADY HAS A STANDARD DME MANUAL WHEELCHAIR?

You are not limited to the type of wheelchair that your client has used in the past if they could benefit from better equipment.

People, circumstances, legislation, and technology all change over time. If your client already has a wheelchair, it does not automatically mean that it is the most appropriate choice for them now or that it necessarily ever was.

You also have the option to provide ANY type of seating and positioning equipment, even CRT products, instead of a DME wheelchair if it benefits your client.

It is up to you to advocate for your clients. Perform your evaluations to help justify the proper equipment choices to address your clients' needs now and over time.

Just because a model of wheelchair was used historically by your client, it doesn't mean their new equipment should be limited to the same technology.

CRT

CRT products are significantly different from standard DME. The description below will help define the difference in products that qualify as CRT:

- Medically necessary, individually-configured manual and power wheelchairs, adaptive seating systems, alternative positioning systems, and other mobility devices
- · Require evaluation, fitting, configuration, adjustment, or programming
- Designed to meet specific and unique medical, physical, and functional needs of individuals to optimize independence and function.

A primary diagnosis resulting from hemiplegia, hemiparesis, a congenital disorder, progressive or degenerative neuromuscular disease, or from certain types of injury or trauma may be a place to start thinking CRT, but do not limit yourself to those diagnoses.

WHO MIGHT BE AN APPROPRIATE USER FOR CRT MOBILITY EQUIPMENT?

A seating evaluation will define if there is need for CRT equipment, but the list below can help you identify the type of user appropriate for CRT equipment.

- Uses a wheelchair as primary mobility every day
- Sits in the wheelchair for long periods
 of time
- Has limitations in sitting balance
- Needs specific dimensions to maintain
 posture and optimize function
- At risk for/has current postural deformities
- Has pain in sitting

- Needs specific support, configuration, repositioning, and/or adjustments to maintain posture, protect skin, and maximize function
- Propels on varied surfaces/terrain indoors and outdoors
- Has tonal abnormalities that interfere with positioning/mobility
- Has a progressive condition

Requirements for the provision of CRT equipment:

- MD* has a face-to-face exam and documents the need for a mobility device
- MD* writes order for MWC, PMD, and/or wheelchair seating
- MD* writes referral for wheelchair evaluation or signs PT/OT POC
- OT/PT performs clinical evaluation
- ATP performs technology assessment and equipment trials with PT/OT
- PT/OT writes clinical documentation
- Physician* signs PT/OT documentation
- Supplier/ATP submits paperwork to insurance
- ATP and/or PT/OT deliver, fit, and provide training for equipment *Could also be a NP, PA, or CNS

***** Providing CRT equipment:

- Requires more knowledgeable, skilled, and experienced professionals
- Requires specialized evaluations, measurements, trials, fittings, training, education, and ongoing modifications
- CRT companies must comply with more rigorous quality standards under Medicare

Knowing whether your client will be a short-term/part-time or long-term/full-time wheelchair user, will help you identify whether they will require DME or CRT equipment.

★ A CRT wheelchair is going to be best practice for a full-time wheelchair user <u>every time</u>!

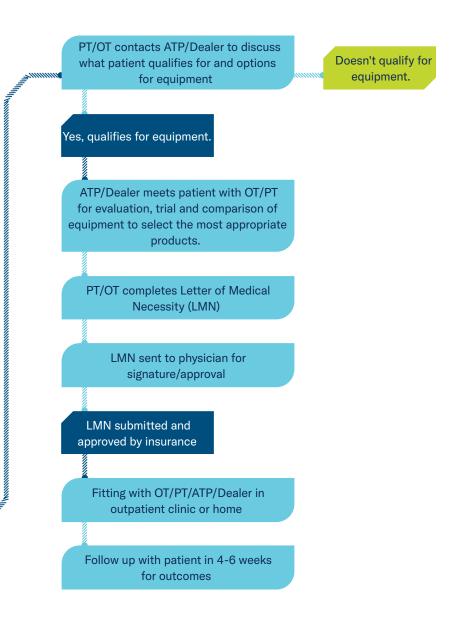
The Process of Getting a CRT Manual Wheelchair

WHERE DO WE START?

Let's look at the big picture of how to get CRT equipment:

Nurse/PT/OT or Consumer/family member identify the need for a wheelchair

Physician/PA/NP: Outpatient face-to-face appointment OR Inpatient assesses for need


No need determined. Doesn't qualify.

Yes, there is need.

PT/OT eval to assess physical, postural, and functional issues/limitations related to patient's ability to perform mobility related ADLs (MRADLs) safely and within a reasonable amount of time

Doesn't qualify for equipment.

Yes, qualifies for equipment.

Manual Wheelchair Comparison Chart

	Standard	Standard Hemi Height	
Equipment Category:	DME	DME	
Medicare Code:	K0001	K0002	
Meant for long-term sitting?	No	No	
Dimensions:			
Wheelchair weight without legrests	>35 lbs	>35 lbs	
Seat width: standard	16", 18", 20"	16", 18", 20"	
Seat depth: standard	16"	16"	
Weight capacity	300 lbs	300 lbs	
Back height	18"	18"	
Lowest achievable seat-to-floor height	21"	19"	
Adjustability to accommodate for postural a	abnormality:		
Arm rest height	No	No	
Back height	No	No	
Seat-to-back angle	No	No	
Ability to create a fixed tilt	No	No	
Seat-to-floor height (STFH)	No	Hemi height only	
Legrest options:			
Standard, elevating (ELR), & swing-away	Yes	Yes	
		wheelchairs	
		006-K0007	
		and features as VCs, but reinforced eight capacity.	

Lightweight	High-Strength Lightweight	Tilt-in-Space	Ultra Lightweight
DME	DME	CRT	CRT
K0003	K0004	E1161	K0005
No	Only w/ appropriate configuration	Yes	Yes
33 - 35 lbs	30 - 34 lbs	>45 lbs	<30 lbs
16", 18", 20"	16", 18", 20", 22"	15" - 19"	Customizable
16", 18"	16", 18", 20"	15" - 19"	Customizable
300 lbs	300 lbs	300 lbs	Customizable
18"	16" to 20"	25"	Customizable
17"	13.5" (most 14.5")	12"	Customizable
No	Yes	Yes	Yes
No	Yes	Yes	Yes
No	Yes	Yes	Yes
No	Yes	Yes	Yes
Yes	Yes	12" - 21"	Yes
Yes	Yes	Yes	Yes + more

This chart is for reference purposes only.

Wheelchair features vary according to manufacturer and model.

DME, Short-Term Use Wheelchairs

Short-term (and/or part-time) means that the client will only need a wheelchair for a period of time, temporarily during recovery from surgery or mild to moderate injury, and they are not at risk for postural issues or pain. They might use the wheelchair for short periods of time throughout the day and/or for longer distances to reduce fatigue.

Standard MWCs: (K0001, K0002, K0003) Standard Heavy Duty MWCs: (K0006, K0007)

These wheelchairs are most appropriate for use on firm, level surfaces and are not appropriate for full-time/long-term use.

Considerations	Why it matters
Minimal adjustability if any	Cannot be optimally configured to an individual which can result in decreased comfort, inefficient propulsion, and poor postural support
Front casters and tires are usually solid	Solid tires are not designed for uneven terrain, carpet, or sloped surfaces and can increase difficulty of propulsion
Rear wheel position is fixed and rearward	Weight is distributed to the front caster, making the wheelchair harder to push. This wheel position results in an inefficient push stroke, leading to fatigue and risk of shoulder injury over time
Heavy	This makes ANY self-propulsion inefficient and puts the user at risk for fatigue and injury
Arm rest height is not adjustable	Inappropriate arm rest height can interfere with propulsion and can affect the overall seated posture. This can also increase the risk of postural deformity over time
Minimal seat-to-floor height (STFH) adjustment if any	STFH affects foot propulsion

Manual Recline WCs: (E1225/E1226):

These wheelchairs are similar in features to standard WCs, but provide the option of changing the seat-to-back angle. The back support has an extension that supports the head posteriorly when reclined.

Considerations	Why it matters	
Heavier due to hardware, back height, elevating legrests, anti-tip bars	Makes it more difficult to self-propel and transport	
Same consideration as Standard MWCs (previous page)		

E1225 = semi-reclining (15° & 80°), E1226 = fully-reclining (80° or greater)

High Strength Lightweight MWCs: (K0004)

A K0004 is similar to a standard wheelchair, but is designed to be somewhat lighter and more adjustable. They are **not intended for full-time/ long-term use**, but for part-time or intermittent use on firm, level surfaces. They may be partially disassembled by caregivers for transport.

Considerations	Why it matters	
Some have partial rear seat-to-floor height adjustability	This can improve self-propulsion efficiency and/or create a "fixed dump" or seat slope for positioning	
Have lower achievable STFH of 14.5" compared to Standard MWCs	This can allow for better foot propulsion for average lower leg length individuals	
Some have back cane adjustability	This allows for changing the seat-to-back angle (STBA)	
Some have arm rest height adjustability	This allows for improved rear wheel access and postural support	

ALWAYS verify KOOO4 features before ordering. Not ALL KOOO4 MWC models have adjustability

CRT, Long-Term Use Wheelchairs

Long-term (and/or full-time) means that the client will need a wheelchair indefinitely as their primary means of mobility whether independent or dependent.

Manual Tilt-in-Space when positioning is the priority

When is a Tilt-in-Space wheelchair appropriate?

- Client is dependent in mobility
- Client is unable to perform independent pressure relief
- Client requires tilt pressure reliefs during the day and is able to perform tilt-in-space pressure relief via self-activated lever
- Client requires postural support, head and trunk control, and accommodation of postural asymmetries
- The goal is to increase sitting tolerance/endurance through changing positions or pressure management
- Client needs improved line of sight due to forward head posture
- Client will benefit from trunk support and open thoracic posture for increased respiratory function
- Client requires safe positioning for feeding/gravity-assisted swallowing
- Client is requires gravity assisted positioning and can utilize UEs and/or LEs for self-propulsion

A manual tilt-in-space wheelchair requires a PT/OT evaluation, justification that other manual wheelchairs are not appropriate, and an ATP involved in the process.

Ultra-lightweight MWC when independent propulsion is the priority

This is **THE** manual wheelchair for a full-time wheelchair user with goals to be active at home and in the community. These wheelchairs can be individually configured to meet the needs of the wheelchair user and optimize function and propulsion. They are designed to be used on indoor and outdoor surfaces in the community and can be folding or rigid.

★ A K0005 wheelchair is the BEST PRACTICE for any full-time wheelchair propeller!! The K0004 is never "good enough."

CRT Ultra Lightweight Manual Wheelchairs

Requirements:

- Client is a full-time/long-term wheelchair user
- Client requires customization such as axle configuration, wheel camber angle, front and/or rear seat-to-floor height (seat slope), or WC frame size that can't be accommodated by a K0001-K0004
- This requires an evaluation by a PT/ OT, a letter of medical necessity, and the involvement of an ATP in the equipment selection process

- -1

Rigid vs folding frame

Rigid

- One-piece frame is comprised of bent and/or welded tubes
- Leg rest hangers are integrated

Folding

- Two-piece frame connected with cross bars for folding
- Removable/swing-away leg rests

Why use a rigid frame?	Why use a folding frame?
Generally lighter weight due to less parts. This is significant for push efficiency and loading into vehicles. Fewer parts can increase durability.	User choice! If someone has been using a folding WC for a long time or just likes folding frame wheelchairs, then that is reason enough.
More rigid equals more efficient. Folding frames will flex more which takes energy away from the push.	Standing, or partial standing, transfers are easier with swing-away leg rests. There are options on rigid frame wheelchairs, but generally a folding WC is easier for these clients.
Rigid frame wheelchairs fit in small areas as well! Consider a fold-down back & quick release wheels.	People who propel the wheelchair with their feet. There are options for rigid frame wheelchairs, but they tend to require custom builds.
	If there is need for elevating leg rests
	Transport efficiency for bariatric clients

Tips for Justifying an Ultra-lightweight or Manual Tilt-in-Space chair:

HOW CAN I MAKE SURE THAT MY CLIENT GETS THE MWC THEY NEED?

Qualification for a CRT MWC is **functionally based**, not diagnosis based. Rule out a lesser DME wheelchairs by documenting why the "least costly" alternative is not effective. Include a description of the client's routine activities and whether they are fully independent in the use of the wheelchair.

1. Use objective tests and measures such as a Wheelchair Propulsion Test

Compare an optimally configured ultra lightweight wheelchair vs. lower-end wheelchair; time propulsion over a fixed distance; count push strokes; differentiate quality of propulsion; document pain; pulse oximetery

- 2. Compare safety, efficiency, and ability to independently complete all mobility related activities of daily living (MRADLs) all day, every day, with a lesser MWC
- Consider the need to configure an ultra lightweight wheelchair for better posture and mobility
- Document the unique features of a ultra-lightweight manual wheelchair and <u>why</u> they are needed:
 - Adjustable front and rear seat-tofloor heights
- Axle adjustability
- Seat slope
- Individualized seat and frame width and depth
- Rear wheel camber
- Seat back angle

OR,

- **5.** Document the unique features of a Manual Tilt-in-Space chair and why they are needed. The ability to tilt the wheelchair seat posteriorly to:
 - maintain position in the chair due to spasticity, decreased trunk control, or endurance
 - to provide gravity assisted positioning required for optimal posture due to postural asymmetries
 - to assist with pressure management during the day
 - to change positions for activities of daily living
 - * Examples <u>why</u> the features may be needed:

Adjustable axle plate is required for center of gravity adjustment to allow for efficient propulsion and decreased shoulder pain from 6/10 to 0/10.

Adjustable axle needed to allow for efficient propulsion compared to a lesser WC: Person took 35 push strokes & 5 min to propel 40' to bathroom, compared to ultra lightweight WC, where it took 15 push strokes & 2 minutes.

Additional seat size options are required as my client of 6' and 170 lbs does not fit the standard configurations of lower-end manual wheelchairs.

A manual tilt-in-space chair is required to provide regular weight shifts in the chair throughout the day; my client is unable to perform an effective pressure relief and is at risk for skin breakdown.

HOW CAN I GO ABOUT GETTING THE APPROPRIATE WC WHEN CLIENTS ARE DISCHARGED SO EARLY?

This is a common challenge with inpatient rehab stays getting shorter and shorter, but it is still possible.

The first thing to consider when doing your initial evaluation is whether or not your client may need a wheelchair full-time when going home. If the answer is "yes," treat your evaluation as if they are going to need a CRT wheelchair, even if they initially go home in a lower-end manual wheelchair for a short period of time. **What do I do?**

- 1. **Plan of Care** Include in the Plan of Care that the client is to follow up with the next clinician in the continuum and the supplier after discharge to obtain the ultra lightweight MWC that is recommended.
- 2. Talk to your client Empower them by explaining that they are going home in a **rental** wheelchair that will turn into a purchase in 12 months. Encourage them to talk to the next therapist in the continuum about getting a better ultra lightweight wheelchair.
- Rule out a K0001 K0004 WC Document using the methods outlined on page 23. Documentation must show why the "least costly" alternative is not effective.

The rental wheelchair or demo WC from the dealer/ATP will buy time for completing the evaluation and procurement process so your client can get the wheelchair they deserve.

Remember to consider the 5-Year Rule. A client in a lower-end wheelchair that isn't going to meet their long-term needs is not the most beneficial option to them. With the useful lifetime rules, a client must remain in the same WC for 5 years (longer with some funding sources), unless they have a change in medical condition that warrants another new wheelchair.

Mobility needs upon discharge need to be considered FROM DAY ONE of the rehab stay!!!

E1161 Manual Tilt-N-Space Configuration

WHAT ARE THE FUNCTIONAL CHARACTERISTICS OF A HIGHLY-CUSTOMIZABLE WC?

Configuration options	Why it matters
Front seat-to-floor height (FSTFH) (<i>Pages 27-28</i>)	Important for safe functional use and transfers
Adjustable Rear seat-to-floor height (RSTFH) (<i>Pages 27-28</i>)	Assists with pressure relief and wheel access
Seat slope: difference between the FSTFH & RSTFH (<i>Pages</i> 29-30)	Important for postural stability and optimal wheel access for self-propulsion
Foot support-to-seat length (Page 33)	Affects LE positioning w/ femoral contact for pressure redistribution or propulsion
Seat width (Page 35)	Affects posture, wheel access for propulsion, and environmental access
Seat depth (Page 38)	Optimizes posture and pressure redistribution
Horizontal rear wheel axle position (<i>Pages 42-45</i>)	Improved push stroke for client
Weight capacity	Accommodating pediatric to bariatric enduser

K0005 Ultra lightweight MWC Configuration

WHAT ARE THE FUNCTIONAL CHARACTERISTICS OF A HIGHLY-CUSTOMIZABLE WC?

Configuration options	Why it matters
Front seat-to-floor height (FSTFH) (<i>Pages 27-28</i>)	Important for safe functional use during propulsion and transfers
Rear seat-to-floor height (RSTFH) (<i>Pages 27-28</i>)	Determines rear wheel accessibility and efficiency of propulsion
Seat slope: difference between the FSTFH & RSTFH (<i>Pages</i> 29-30)	Important for postural stability and optimal wheel access for self-propulsion
Foot support-to-seat length (<i>Page 33</i>)	This affects LE positioning, femoral contact for pressure redistribution, and foot plate clearance
Front frame angle (Page 34)	Legs and feet brought closer to the body make the overall WC footprint smaller, making it easier to get close to things for reaching
Overall frame length (Page 60)	A proper frame length ensures the wheelbase is proportional to the client
Seat width (Page 35)	Affects posture, wheel access for propulsion, and environmental access
Seat depth (Page 38)	Optimizes posture and pressure redistribution
Seat back height (Page 40)	An optimal back support height will balance postural stability and functional reach for ADLs
Seat-to-back angle (Page 41)	This angle provides optimal pelvic and trunk support for stability and daily function
Horizontal & vertical rear wheel axle position (<i>Pages 42-45</i>)	This can be configured for optimal center of gravity and wheel access for the most efficient push stroke
Rear wheels (Page 49)	Affects propulsion, rolling resistance, and weight
Rear wheel camber (Page 50)	Used to increase lateral stability and turning efficiency
Casters (Pages 51-52)	Stability, rolling resistance, and maneuverability

* A K0005 is an individually configured, tailor-fit wheelchair. It is not merely small, medium, or large.

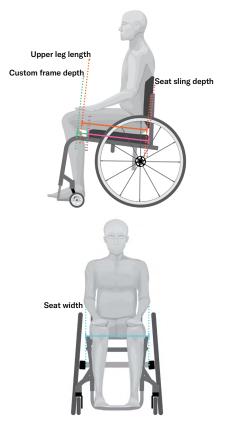
K0005 Configuration

+------

Measuring for a CRT manual wheelchair

The features of a manual wheelchair will significantly affect the client and performance of the wheelchair in terms of postural support and wheelchair stability, maneuverability, and ease of propulsion.

This is why the ability to configure a CRT manual wheelchair is best practice for a person who uses a wheelchair long-term.


Relating the client's measurements to the wheelchair specifications is key!

Anatomical measurements from mat evaluation

Upper leg length

Wheelchair measurements

to be performed with the person in a WC seated in their desired position of propulsion

Seat-to-floor height (STFH)

The front and rear seat-to-floor height is usually not the same in an optimally configured K0005 MWC. (visual on next page)

Front STFH measurement

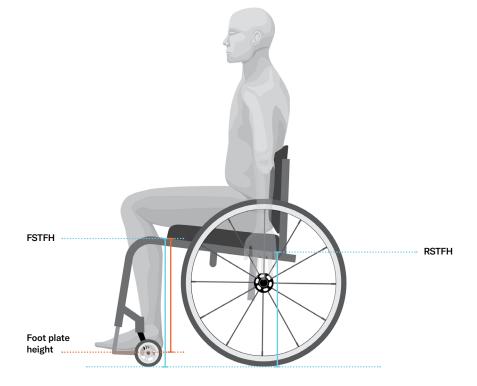
WC measurement is from where the leading edge of the seat upholstery meets the frame of the wheelchair to the floor.

Anatomical measurement is meant to match the dimensions of the lower leg along with the foot plate to ensure lower extremity support and accessibility.

• An appropriate height will provide proper support of the thighs and lower legs to optimize stability and pressure redistribution

Rear STFH measurement

WC measurement is from the wheelchair frame seat tube to floor, right in front of the back post. You must have the client in a WC to determine their RSTFH

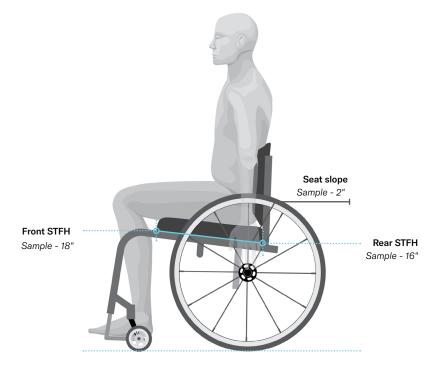

- This height is meant to ensure appropriate access to wheel handrims for optimal propulsion. Optimal RSTFH is when the finger tips of the client touch the axle of the wheel. See "Vertical axle positioning" (page 45) for more
- A lower rear STFH relative to the front STFH can provide increased postural stability for those with impaired trunk control

Foot plate height measurement

WC measurement is the distance from the top of the footplate to the seat upholstery. It should be equal to the lower leg length minus the height of the cushion. See page 33 for more.

* Always consider the wheelchair seat cushion thickness and clearance of tables and desks when measuring STFH!

For determining both the front and rear STFH, keep in mind that some seat cushions may have a different thickness in the front and the rear of the cushion. The difference will affect seat slope if not accounted for.


★ USE A DEMO! All WC measurements should be completed with the client in a demo wheelchair! The demo does not have to be perfect for your client, but it will give the best starting point for fitting them.

Seat slope

The seat slope is the difference between the front and rear STFH and is important for postural stability and optimal wheel access for propulsion.

- The greater the seat slope from front to back, the more passive stability is provided for those with decreased trunk control
- Consider available hip and knee range of motion when determining seat slope
- Insufficient seat slope may make sitting up difficult while too much seat slope may make transfers more difficult

Most adults need about 2" seat slope if they propel with their UEs. Foot propellers need 0 - 1" of seat slope.

Utilizing an ergonomic (ergo) seat on an ultra lightweight MWC

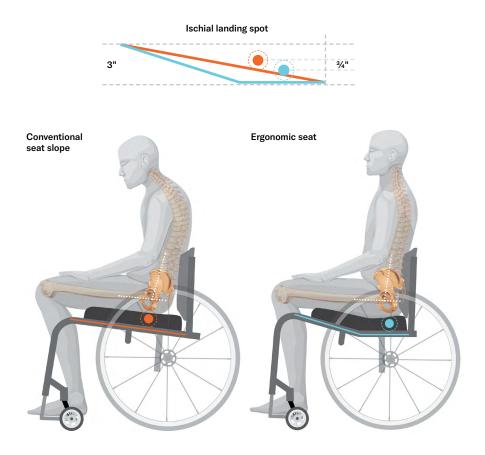
Sometimes a conventional seat slope won't work for these reasons:

- There is an insufficient range of motion (ROM) at the hip and/or knee required for the slope
- The individual requires 3" or more seat slope for stability and rear wheel access With 3" or more of seat slope an acute hip-to-back angle is created so even a WC user with normal ROM cannot access the rear portion of the seat
- Individual may feel unstable
- Individual complains of pain
- Individual complains of sliding forward

Example of limited ROM at the hip: Individual slides into an abnormal posture by shifting their legs and pelvis forward to open the angle back up for comfort. Then, they slouch forward to maintain their center of gravity/stability.

Ergo seat for ultra lightweight manual wheelchairs

- An ergonomic seat is intended to match an individual's shape while providing a lower RSTFH relative to the front. The RSTFH is maintained for a length of the frame before the seat tubing ascends up to the FSTFH specified.
- This promotes an upright posture by maintaining a more open STBA compared to a conventional seat slope
- It allows for better stability, positioning, and pressure distribution by creating a stable, neutral place to seat the pelvis and load the femurs
- Allows improved rear wheel access for more efficient propulsion
- It optimizes total surface contact area, increasing pressure redistribution for the bony prominences and encouraging pelvic stability
- The shape allows the thighs to be more level, making it easier to carry items during daily tasks


Ergo seat measurement

WC measurement is from the back post of the WC to the point in the tubing where you want it to start to bend upwardly.

Anatomical measurement is from behind the hip to the greater trochanter, plus 1 - 2".

 Instability from an increased seat slope can be offset by using an ergo seat when clinically appropriate for the user. The idea is to contain the ITs within the flat ergo well. Since the frame is providing the positioning, the goals of the cushion need to be consistent with the goals of the wheelchair. The cushion needs to follow the contour of the frame and provide a flexible pressure relieving interface between the frame and the wheelchair user.

Foot support-to-seat length

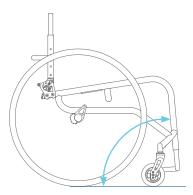
The foot support-to-seat length is also known as leg rest length. It is important to provide lower extremity support, ensuring optimal femoral contact at the seat surface and clearance of obstacles at the footplates.

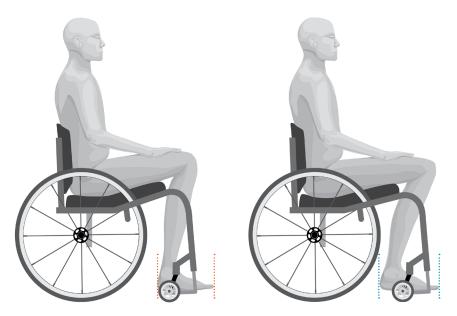
It is important to use a demo wheelchair with the person in the desired position of propulsion, to get the most accurate measurement.

Foot support-to-seat - too short

- This can raise the knees which reduces clearance for under tables and increase slope of the upper legs which can make it harder to carry items
- Can reduce femoral contact and increase peak pressure at the ITs

Foot support-to-seat - too long


- Lower legs are unsupported and pressure increases distal femur. The client may slide forward to reach the foot support, and by doing so, shift into a posterior pelvic tilt
- This can increase risk of a postural abnormality and peak pressures at the seat and back support surfaces



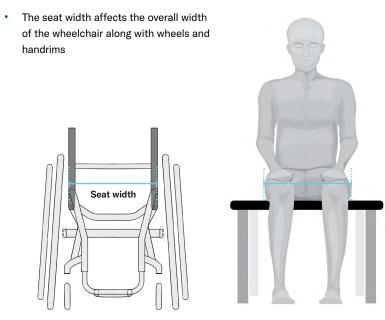
Front frame angle

Front frame angle is critical to provide appropriate support to the lower extremities.

This should be set by asking the client where they want their feet (further in or out) and have the client place their feet where they want them. The front frame angle selected should be the one where the ball of the client's foot can rest on the foot rest tube. Measuring for the overall frame length is a more accurate way of determining the appropriate front frame angle for a client. *See page 60 for more*.

Example visual: A tall individual may need to tuck their legs in tight under the WC due to their longer lower leg length. This allows them to still clear the edges of tables, desks, counters and keep their overall wheelchair footprint smaller. They must have an available ROM at the knee for this.

Seat width



Measuring the appropriate seat width is critical for postural stability and propulsion efficiency.

Seat width measurement

WC measurement is outside to outside of seat tubes at the back post. This should match the client's anatomical measurement.

Anatomical measurement is the widest point of the body at the hips including all residual tissue.

Seat width - too narrow

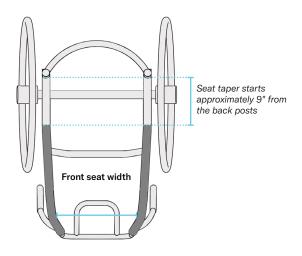
This can lead to unwanted pressure and postural abnormalities due to compensation

Seat width - too wide

- This can make it difficult to access the handrims and result in inefficient propulsion which can cause upper extremity injuries over time
- Negatively affects environmental accessibility and positioning/posture in the WC

Front seat width

This measurement allows you to taper the front of the seat to match the client's posture. Front seat width can also be referred to as the seat taper.


Not all client's need to have a tapered seat. However, client's whose LEs are much narrower than their hips may benefit from front seat taper to:

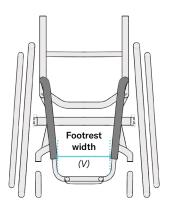
- Provide better LE positioning with better overall WC fit
- Allow the ability to get closer to things for transfers and reaching
- Provide a smaller overall footprint for accessibility
- "See me, not the wheelchair"

Front seat width measurement

WC measurement is inside of front frame tube to inside of opposite front frame tube.

Anatomical measurement is the width across the client's legs across the distal end of the femurs, proximal to the knees. This width should match the front seat width measurement.

Footrest width


This measurement allows you to match the footplate with a LE positioning that is comfortable for the client. Someone who has large legs or LE edema may not need any front seat taper. Someone whose lower legs are smaller than their hip width may need some leg rest taper.

Footrest width measurement

Select a width that allows for adequate space for the client's feet and tapers to the client's desired position. Measure across both the client's feet with shoes.

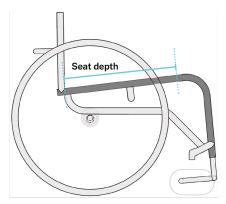
Standard - Inside of front frame tube to inside of opposite front frame tube

V - Inside of front frame tube to inside of opposite front frame tube $2\frac{1}{2}$ " above footrest

Footrest width - too tight

- The tubes press on the client's legs or feet
- The footplate may not be wide enough to allow the feet to pivot for transfers if the client leaves their feet on the footplate for transfers

Footrest width - too loose


- The client does not have adequate foot/LE positioning coming from the WC. Legs and feet may lose position, especially with spasticity or going over bumps
- This can decrease environmental access by increasing the WC footprint

Seat sling depth

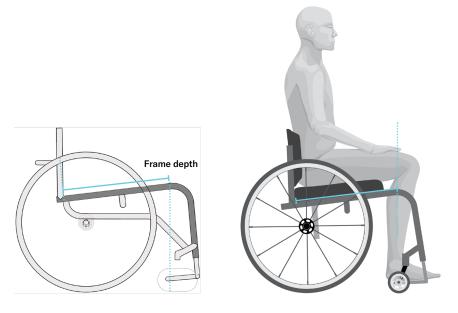
The goal of seat sling depth is to maximize support and pressure distribution without interfering with LE positioning. An appropriate depth will provide optimal stability in the wheelchair.

Seat depth measurement

WC measurement is from the back posts to the leading edge of the seat upholstery.

Anatomical measurement is from behind the user's hip including residual tissue to their popliteal fossa AND should account for where they want to position their legs, more or less tucked.

Seat depth - too short


Decreases femoral contact for pressure distribution which can lead to pressure injury

Seat depth - too long

 This may result in sliding forward to decrease pressure behind the knees, resulting in poor posture and decreased propulsion efficiency

Frame depth

The frame depth is measured from the front of the back cane to the front frame bend. The center point of the trailing front caster is usually lined up with the front frame bend, resulting in a balanced wheelchair for optimal stability and propulsion.

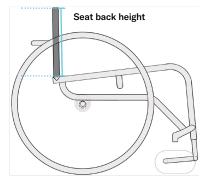
Frame depth on a rigid wheelchair should be set so that the bend in the frame lines up with the bend in the user's leg. This results in a balanced wheelchair because the front casters will move forward proportionally to the end user's body when frame length is added to fit their shape.

If you notice anterior instability, caster loading, or impaired maneuverability, check the frame depth!

Seat back height

Proper back height in a K0005 is important for providing appropriate postural support and upper extremity function for propulsion.

Seat back height measurement


The WC measurement is from the top of the back post to the top of the seat tube at the back post.

Select a seat back height that allows the prescribed back support to reach desired height to for adequate postural support.

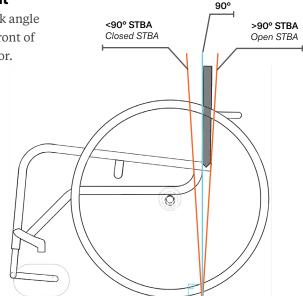
An optimal back support height is determined by the lowest point of the trunk needing support for stability and function.

Back support - too high

 May limit scapular movement during propulsion which impacts upper extremity range of motion

Back support - too low

- May result in a feeling of instability
- Individual may slide into a posterior pelvic tilt seeking stability. This can increase peak pressures and promote abnormal posture


When measuring for a manual tilt-in-space chair the back height should support the full length of the trunk, especially when in the tilted position. Measure from the seat to the top of the shoulder and consider the height of the cushion being recommended.

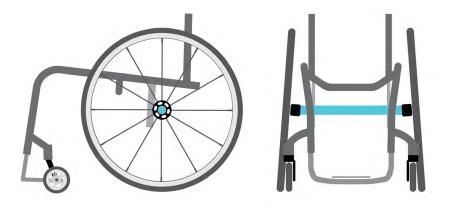
Seat-to-back angle

i The seat-to-back angle (STBA) is critical for postural support and assuring the best position for efficient propulsion. Most adults need the STBA open a few degrees to allow room for their normal spinal curves. This angle can be further adjusted to the client's needs using adjustment on the back support mounting hardware and on the wheelchair itself if available.

STBA measurement

On the WC, seat-to-back angle is measured from the front of the back post to the floor.

- Greater than 90° may improve postural stability for individuals with impaired trunk control and/or limitations in hip range of motion. 92° - 93° may provide the lumbar area support for promoting normal spinal curves.
- Manual tilt-in-space wheelchair users often require a more open STBA to assist with balance and/or accommodate for the seating system recommended. In addition, some manual tilt-in-space chairs are also available with manual recline to further assist with positioning, balance, and activities of daily living in the wheelchair.


Position of the rear wheel axle

The horizontal and vertical positions of the rear wheel axle, have a significant impact on all of the functional characteristics of the wheelchair such as:

stability

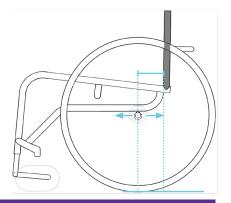
- turning radius
- weight distribution
- wheel access

Keep in mind that a forward axle position reduces the forces needed to propel and the rear axle should be set for the center of mass of the client.

Weight distribution and configuration have a greater impact on ease of wheelchair propulsion than overall mass of the chair. This applies to upper extremity, lower extremity and hemi-propulsion styles, as well as to a caregiver who is pushing the wheelchair.

Every full-time, long-term wheelchair user should have the rear wheel positioned uniquely for them to prevent injury and ensure full access to their environment.

Horizontal axle positioning


The horizontal axle position will determine the wheelchair center of gravity (COG).

When the axle is under the center of mass of the client, the majority of their weight is on the large rear wheel. Ideally, this is about 80% of their body weight. If weight is not on the rear wheels, it will load the front casters, requiring more force to roll the WC.

Horizontal axle measurement

WC measurement is the horizontal distance from the front of the back post to the center of the rear axle of the wheelchair.

* Best practice is to position the rear wheel as far forward as possible without unsafe rear instability or caster interference.

Some manual tilt-in-space wheelchairs offer the ability to adjust the center of gravity horizontally to assist with weight distribution for propulsion and stability in the chair. Other manual tilt-in-space chairs offer the option of a reverse configuration (large drive wheel in the front) to facilitate access to the drive wheel for propulsion.

Forward axle Rearward center of mass

Benefits

Allows for more efficient upper extremity position for propulsion

Increases frontward stability of the WC. WC is less likely to tip forwards when rolling down, reaching forward, or scooting forward for transfers

Decreases turning radius and overall footprint of the wheelchair, making it easier to navigate small spaces

Increases ease of performing a wheelie to maneuver obstacles

Considerations

If too far forward, it increases the risk of wheelchair tipping backwards

Rearward center of mass

Benefits

The WC will be more stable in the rear*

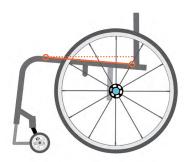
Considerations

Less efficient upper extremity position to reach rims, could lead to injury over time

Increases the forces necessary to turn the wheelchair

Increased rolling resistance makes it harder to propel

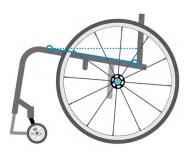
Increases difficulty of performing a wheelie to maneuver obstacles


Increases the turning radius and length of the wheelchair footprint, making it difficult to navigate small spaces

*Increases risk of WC tipping forward

Vertical axle positioning

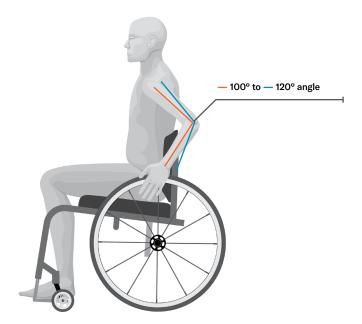
Proper vertical axle position allows for optimal upper extremity position for propulsion. Vertical axle position determines RSTFH measurement and therefore affects seat slope.


Lower axle (on axle post) Higher RSTFH, less seat slope

Vertical axle measurement

The vertical position of the axle is determined by how high or low the RSTFH of the wheelchair needs to be. Remember to account for cushion thickness here.

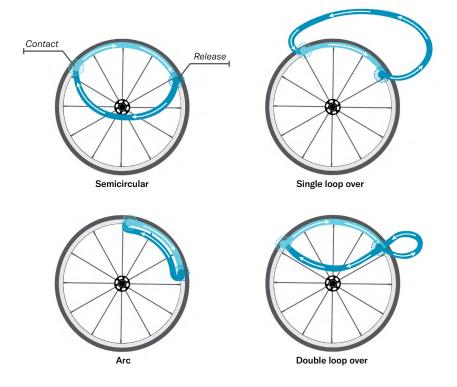
For client's with hand function, finger tips should touch the center of the rear axle when sitting upright with arms to the side. For those with tetraplegia, use the thenar eminence instead as your reference point. Higher axle (on axle post) Lower RSTFH, more seat slope


Effective / efficient propulsion is affected if the vertical position is too high or low, and it may place the upper extremities in a position that could cause injury over time.

MWC propulsion

The wheelchair configuration is critical for optimal push efficiency. The goal is long, smooth strokes to decrease the frequency of pushing.

When propulsion forces and repetitions are minimized, the preservation of upper limb function is maximized. This reduces the risk of discomfort, pain, poor function, and injury.


The ideal seat height and axle position is when the angle between the upper arm and forearm is between 100° - 120° when the hand is resting on the top center of the pushrim.

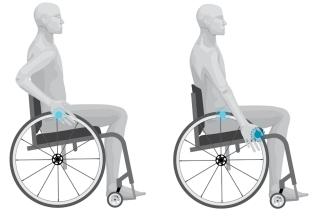
 For lower extremity or hemi-propulsion, optimal position also includes a FSTF that is up to 2" lower than the lower leg length to allow good foot contact with the ground, as well as 0-1" seat slope and a 95 degree open back angle.

Upper extremity propulsion patterns

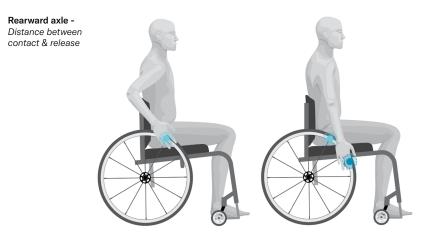
There are four upper extremity stroke techniques consisting of a push phase and a recovery phase. The pattern of recovery (release to contact) is the largest difference between techniques.

The semicircular pattern is encouraged because:

- It promotes better biomechanics
- It is associated with lower stroke frequency
- It promotes more time in push phase than recovery phase
- The hand follows an elliptical pattern with no quick changes in direction and no extra hand movements


Single loop over is the most common pattern for individuals with paraplegia.

Propulsion efficiency



A forward axle position allows for longer, smooth push strokes which will also decrease frequency of pushes.

Forward axle -Distance between contact & release

A rearward axle position reduces the user's ability to get a long stroke since they are starting the push phase near the front of the rear wheel.

* A forward axle position distributes the user's weight over the rear wheel, making propulsion easier. A rearward axle position puts more weight on the front casters, adding more rolling resistance making propulsion more difficult.

Rear wheel options

Wheel type and size are important to minimize rolling resistance, decrease weight, and increase reliability of the system.

Rear wheel size

Diameter of the wheel is determined by the optimal RSTFH for a client. For example, a taller person may need a larger diameter wheel.

Rear wheels - too large

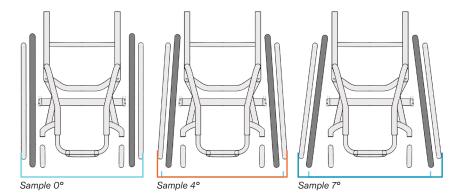
- The seat-to-floor height and access to the hand rims may be compromised
- A larger diameter wheel may interfere with transfers since they create a little bit bigger hurdle to transfer over
- A larger wheel will increase the length of the wheelchair footprint. This could negatively affect client reach, ADLs, and wheelchair maneuverability

Pneumatic vs Non-pneumatic tires

Pneumatic tires: (filled with compressed air)

- · Weigh less with better shock absorption
- Must be inflated properly for optimal propulsion, under inflated tires are less efficient and harder to propel. Under inflation is a common occurrence
- High pressure pneumatic tires have lower rolling resistance (RR)

Non-pneumatic tire:


- May be solid or pneumatic with flat-free inserts
- · Airless insert and solid tires have highest RR and low efficiency
- Often used when a flat-tire could be a safety risk because the ability to properly maintain pneumatic tires is in question
- Solid tires may have reduced maintenance
- * Evidence shows that the perceived weight equivalent of airless insert tires is the same as adding 96 pounds of weight that the user must carry.

Consider thoroughly ruling out high pressure pneumatic tires before recommending flat free inserts. https://bit.ly/3XwXAMe

Choose a tire that is lightweight to decrease the initial force required to turn the wheels. Low tread and the least amount of surface contact to the ground decreases rolling resistance.

Rear wheel camber

Camber is the inward tilt of the rear wheel. The camber angle affects lateral stability and the efficiency of propulsion as well as rear wheel access. When performing tasks that require leaning outside the footprint of the wheelchair, increased camber will increase stability and promote maintaining an upright position in the wheelchair.

Most adult wheelchairs used for daily use have 0° - 3° of camber while pediatric sizes may have more to improve wheel access. Wheel camber decreases proximal distance to the user at the top for wheel while increasing distance between wheels at ground level.

Sports WCs have greater than 3° degrees camber for stability. The extra wide camber also increases the ease of propulsion (longer lever arm).

Rear wheel spacing is the distance between the top of the wheel and the back post. The goal is the narrowest possible configuration to allow the most accessibility.

• Different amounts of rear wheel spacing is required for different camber angles and wheel/tire configurations

Remember that adding camber will affect the overall footprint of the wheelchair.

Caster options

Casters affect rolling resistance, stability, and maneuverability. The key is to have proper axle adjustment to get most weight through the rear wheel and decrease rolling resistance.

Caster size

Caster size affects FSTFH and seat angle of the wheelchair.

Most WC manufacturers will tell you which available caster sizes will work when you are selecting the front frame angle and STFH.

The old way of thinking is that large casters roll easier. However, the correct way of thinking is that less weight on the casters allow them to roll easier. The key is to decrease as much contact with the ground without compromising stability, while also having proper rear axle adjustments (rear COG) to get the most weight on the rear wheel.

The goal is always to minimize rolling resistance. To achieve this, choose a caster shape and size with the least contact surface to the ground.

Caster clearance /potential

interference (overhead view)

Casters - too large

- May hit the user's feet
- May interfere with the footplate and the rear wheels

Casters - too small

• May make it difficult to go over obstacles

 Casters <6" are less susceptible to flutter and provide clearance for foot rests.

> https://www.wheelchairstandards.pitt. edu/sites/default/files/fact-sheets/ casterperformanceoverview.pdf

Caster - rear wheel & foot plate clearance

Larger caster with forward axle

Caster shape

Caster shape is also significant to their ability to roll. The less the caster touches the ground the less rotational inertia it takes to make the wheel turn. Most of the time, the wider the caster is, the more contact it has with the ground. Some styles have a tapered shape so that when on a flat surface the caster contact point is optimal. Then if the user rolls over a crack or into a softer surface (e.g. dirt, gravel) they have more surface area to help them when they need it.

Caster - too narrow

- May be difficult to manage rough terrain
- May have increased risk of getting caught. Example: cracks in sidewalks

Caster forks

Caster forks provide alignment and adjustment features of the casters for stability, and maneuverability based on client's needs and preferences. Suspension caster forks provide shock absorption.

Additional CRT MWC options

There are a variety of additional options for CRT manual wheelchairs because they are truly the most customizable MWC option. Some are for function, but may not be necessary for every client while others are more client preference.

Configuration options	Considerations
Handrim and wheel lock style	Affect use and propulsion (especially for those with limited dexterity), otherwise may be heavily dependent on client preference
Foot plate style	Affects safe foot placement/positioning Options may include rigid, adjustable, swing-away, flip-up, and flip-back
Arm rest (optional) style, height, attachment	May be needed to promote postural stability
	May provide a resting place to reduce fatigue
	Height can affect optimal wheel access
	Style can affect reaching and transfers
	Options may include: adjustable, swing-away, flip-up, and removable. Full and desk length
Side guards (optional) adjustable and/or removable	Consider for postural support and stability
	Can provide protection from the wheels during use
Anti-tips	Safety feature for some environments and terrain.
	May be fixed, flip-up, removable
Push handles	Will the client be pushed a fair amount of the time? Can added push handles help them maneuver the WC before and after transfer?
Low seat-to-floor height	Required for foot propulsion or hemi-propulsion with ultra-lightweight or manual tilt-in-space chair
User-tilt option	Allows chair occupant to move in/out of posterior tilt in some manual tilt-in-space chairs
Take-apart frame	Allows caregiver to remove the seating system off the base of some manual tilt-in-space chairs for transport

The setup of a CRT MWC demands knowledge of client's history and potential for function. If not done correctly, the client may not realize that they are at a disadvantage, and it can have long-term effects. Understanding wheelchair types and setup to maximize function will enhance their life and also decrease the risk for complications.

Power Assist

?

WHAT IS A WHEELCHAIR POWER ASSIST DEVICE?

A power assist device can be added to almost any type of manual wheelchair to help the user more efficiently navigate their environment. Power assist devices can be mounted on rigid, folding and manual tilt-in-space chairs. Power assist technology can assist in mitigating risk for upper extremity repetitive stress injury by reducing the number of pushes required. Power assist technology can also assist someone who is struggling to effectively propel their manual wheelchair with hemipropulsion.

Refer to Permobil's Power Assist White Paper for a systematic review of the evidence on all types of power assist. <u>https://bit.ly/4d9AxwN</u>

Power assist can be hub-mounted, rear mounted, or front mounted. Hub mounted devices weigh significantly more than rear mounted devices. A rear-mounted power assist does not require pushing to activate it which frees the hands for function.

WHAT TYPE OF PERSON WOULD BENEFIT FROM POWER ASSIST?

- The athlete who wants to continue in her sport and continue working out for years to come
- The office worker who uses power assist to wheel several blocks to his office, to maintain his energy throughout the day
- The elderly gentleman who has suffered a CVA who is a foot propeller and uses power assist for efficiency

Hub-Mounted Power Assist

With this style of power assist, the motors are in the wheels. They are activated through force on the pushrims. That force triggers sensors which signal the motors to propel the wheels forward.

Benefits

Can be programmed for sensitivity, boost, and speed

Very little force is required to activate

Assist is on every push

May offer slope deceleration assist which can help maintain a comfortable speed when going down grades and ramps

Can be used with folding or rigid MWCs

With programming, if there is a strength discrepancy from left or right, it may be able to compensate and maintain the desired path

Considerations

Adds weight to the wheelchair (up to 22lbs per wheel)

Wheels need to be removed to facilitate transport in a vehicle

Need to protect the wheels during transport, prevent damage to sensors

When the motors are not engaged (short distances, select environments) the wheels add weight to every push

If battery dies, adds resistance to wheels

Modifications to the WC may be necessary such as added hardware and increased WC width, which could limit access to wheels and accessibility to narrow spaces

Also require "power adaptable or power reinforced frame" from manufacturer

Eliminates the ability to use wheel camber

Some users consider adapted vehicles to avoid removing wheels for transport, which is a considerable cost

Rear-Mounted Power Assist

This style of power assist is a detachable, single motor component. It attaches to the wheelchair axle and wearable devices or controllers signal the motor via Bluetooth or switches to start, accelerate, and stop. Turning the WC is still guided by the user's hands on the handrims.

Rear-mounted device

Benefits

Easily removed when transferring MWC into a vehicle, for transport, and charging

On-demand function. Not necessary to have on the WC when not needed

(short distances & around the house)

Acceleration and top speed are programmable, allows for safe operation

Programmable to meet different needs

Lightest weight option

Freewheels when off or if battery runs out; minimally increased resistance

Does not compromise configuration of the wheelchair, which is significant for pushing without the device

Allows for more user-defined settings for use in different environments and when selecting input devices (control via dial, switch, or Bluetooth wearable)

Weather-sealed / water-resistant

Can be used with folding or rigid MWCs

Can be used with manual tilt-in-space wheelchairs to help

Considerations

User must be able to control rate of descent down grades and ramps

Disc breaks can be added to the wheelchair to assist with deceleration, but are a separate device

Certain amount of training may be required for the user to safely operate

Front-Mounted Power Assist

Front PAD typically have a motorized wheel that is located in front of the footplate or footrest of a MWC. The system attaches to the front frame of the MWC and elevates the front caster wheels off the ground. It is then controlled by a tiller or handle-bar style system with an external motor and external battery.

Benefits

No pushing required

Improved access to different environments because front casters are floating

. . . .

Braking mechanism

Increased speeds

Considerations

Requires use of tiller for control

Can be challenging to load due to size

May not be as suitable for indoor use

MWC Power Assist

Conclusion

?

WHY IS A MANUAL TILT-IN-SPACE OR ULTRA-LIGHTWEIGHT CRT MANUAL WHEELCHAIR BEST PRACTICE FOR FULL TIME WHEELCHAIR USERS?

A fully customizable wheelchair made of lightest highstrength materials will:

- Decrease risk of upper extremity pain or injury
- Contribute to short and long-term functional success
- Decrease the incidence of secondary complications
- Last longer than standard wheelchairs
- All of the above also make them more cost effective

WHY IS IT IMPORTANT TO CUSTOMIZE FRAME DIMENSIONS?

We maximize client potential through a custom fit.

The evidence-based recommendation from RESNA's position paper "The Application of Ultralight Manual Wheelchairs" states that, "The person cannot conform to the wheelchair, but the wheelchair must conform to the individual." By doing this, we...

- Optimize roll efficiency of the manual wheelchair
- Reduce risk of repetitive strain injury over time
- Aid in postural alignment
- Reduce risk of pressure injury
- Improve function

Quick Guide - MWC Fit

Important considerations when completing wheelchair specifications:

- Choose the wheelchair you will use for the evaluation (the client's existing wheelchair or demo) stay with this wheelchair throughout the measuring process
- Measure the demo being used for your records and as a reference for new wheelchair specifications. Be sure to include overall width and overall frame length this is the functional footprint of the wheelchair and may be crucial for the client's environmental access and function
- Place the client in the demo wheelchair and ask the client to sit in their most typical and desired position the position they are in 80% of the time
- Now you are ready to complete your measurements using the selected wheelchair as a reference, changing what needs to change for optimal configuration

Below is a model for how to achieve the best fit:

Width

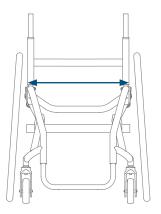
- Seat width
- Front seat width
- Footrest width

Length

Overall frame length -

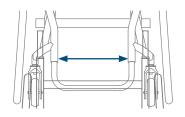
- Seat depth
- Frame depth
- Front frame angle

Wheel access

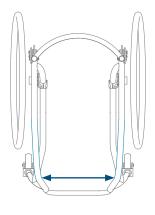

- Seat-to-floor heights
- Center of gravity
- Camber
- Wheel spacing

WC width quick reference

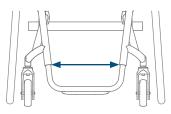
Seat width + front seat width + footrest width (standard or V)


Seat width

Outside of seat tube at back post to the outside of the opposite seat tube


Footrest width - Standard

Inside of front frame tube to inside of opposite front frame tube

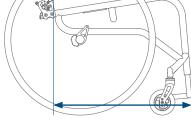

Front seat width (seat taper)

Inside of front frame tube to inside of opposite front frame tube

Footrest width - V

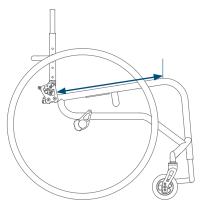
Inside of front frame tube to inside of opposite front frame tube 2 ½" above footrest

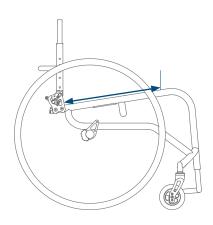
WC length quick reference


Overall frame length = seat depth + frame depth + frame angle. Using the overall frame length to determine the front frame angle is the most accurate way of measuring for it.

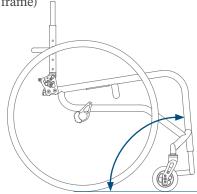
Overall frame length

Seat depth


Front edge of footrest to front edge of back post


Front of back post to front of seat sling

Custom frame depth


Front of back post to beginning of bend

Front frame angle

Frame front to floor (behind front frame)

Dimensions & tips

Frame dimension		
Seat width	Width should only be as wide as necessary, allowing for use of frame to promote postural alignment, improve wheel access, and maximize environmental access	
Seat depth	Maximize support of the upper leg and pressure distribution without interfering with posterior aspect of lower leg	
Frame depth	Match frame to client proportionally to the upper leg Bend of frame should start at popliteal fossa	
Ergo seat	Select a size that goes at least 1" past the greater trochanter	
FSTFH	Must consider the cushion being utilized when selecting Consider transfers, access under tables, desks, and clearance required under foot plate Seat slope is the difference in front and rear seat heights Propulsion style	
RSTFH	Use rear seat height to maximize wheel access and achieve a more efficient push	
Overall frame length or front frame angle	Select so that frame is proportional to the length of the client's side profile while sitting in the desired position	
Footrest width	Select a width that allows for adequate space for the client's feet and tapers to the client's desired position	
Seat back height	Select a seat back height that allows the prescribed back support to reach desired height for adequate postural support	
Seat back angle	Select seat back angle that results in desired support, balance, and optimal spinal curves when seated	
Center of gravity	Ideally 80% of the client's body weight on the rear wheel. Achieved this by bringing the rear wheel forward, reducing the amount of weight on the front casters and improving wheel access	
Camber	Eases initiation of movement and turns, increases lateral stability and, therefore, functional width of wheelchair	
Wheel spacing	May use in combination with camber to achieve a neutral shoulder alignment during propulsion, impacts functional width of the WC	
Wheel size	Select a wheel size that allows for 100-120° of elbow flexion when the client is at the start of a push stroke	

Pro tip

Pro tips are not all inclusive and do not take the place of a skilled wheelchair seating and mobility evaluation

Matching the frame proportionally to the client results in better weight distribution and unloading of casters, easing propulsion

For best results, your demo should have an ergo seat

Most adults require between 17-19.5" for front seat height The more bend in the knee, the lower the seat to floor height required for adequate clearance at foot plate

Must consider how much seat slope the individual can manage functionally and any range of motion limitations. With client's upper extremity extended down to the side, middle finger should be at bottom of wheel hub

Consider hamstring length, spasticity, overall length of wheelchair Overall frame length is inherently more accurate than choosing a front angle, so use overall frame length in conjunction with seat depth and custom frame depth

Consider transfer style and types of footwear worn

Have your back support demo on the wheelchair

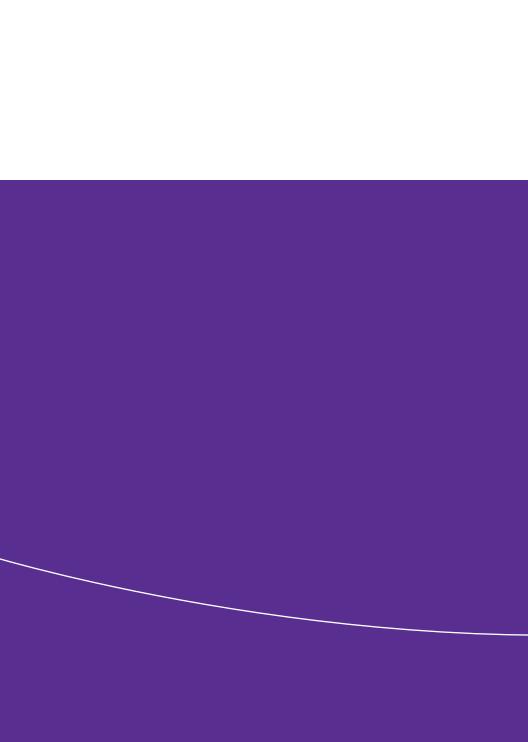
With the client's upper extremity extended down to the side, middle finger should be at center of rear axle, or with client in wheelie, caster should be 2" - 4" off ground 2.5" to 3.5" is typically a good starting point

Can negatively impact accessibility with adult wheelchairs if >3°

Set seat to floor height first in order to achieve postural stability and environmental access. Then apply the correct wheel size for optimal wheel access

Glossary

Wheelchair & Parts		
WC:	Wheelchair	
WCs:	Wheelchairs	
MWC:	Manual wheelchair	
MWCs:	Manual wheelchairs	
STFH:	Seat-to-floor height	
PMD:	Power mobility device	
FSTFH:	Front seat-to-floor height	
RSTFH:	Rear seat-to-floor height	
STBA:	Seat-to-back angle	
COG:	Center of gravity	
ELR:	Elevating legrest	
Client Function		
ROM:	Range of Motion	
ADLs:	Activities of daily living	
MRADLs:	Mobility related	
	Activities of daily living	
RR:	Rolling resistance	


Body & Posture		
PPT:	Posterior pelvic tilt	
ASIS:	Anterior superior iliac spine	
PSIS:	Posterior superior iliac spine	
IT:	Ischial tuberosity	
ITs:	Ischial tuberosities	
LE:	Lower extremity	
LEs:	Lower extremities	
UE:	Upper extremity	
UEs:	Upper extremities	
Process		
LMN:	Letter of medical necessity	
DME:	Durable medical equipment	
CRT:	Complex rehab technology	
POC:	Plan of care	
CMS:	Centers for medicare & medicaid	
	services	
People		
ATP:	Assistive technology professional	
MD:	Medical doctor/physician	
NP:	Nurse practitioner	
CNA:	Certified nursing assistant	
PA:	Physician assistant	

- -

References

- Berner, T., Bernstein, J., Black, J., Cabarle, M., Roesler, T., Scarborough, S., Ott, J., Worobey, L. (2023). RESNA Position on the Application of Ultralight Manual Wheelchairs, Rehabilitation Engineering & Assistive Technology Society of North America. Assistive Technology, DOI: 10.1080/10400435.2023.2221148
- Boninger M.L., Baldwin M., Cooper R.A. Gebrosky, B., Bridge, A., O'Donnell, S., Grindle, G. G., Cooper, R., & Cooper, R. A. (2020). Comparing the performance of ultralight folding manual wheelchairs using standardized tests. Disability and Rehabilitation: Assistive Technology, 1-10.
- Lange, M and Minkle, J. Seating and wheeled mobility : a clinical resource guide. (2018). Slack Incorporated.
- Lin, J., Sprigle, S. (2020). The influence of operator and wheelchair factors on wheelchair propulsion effort. Disability and Research: Assistive Technology.3 (15), 328-335. doi: 10.1080/17483107.2019.1578425
- 5. Permobil Department for Scientific and Medical Affairs.(2022). A systematic review of the evidence for power assist devices[White paper]. https://www.permobil.com/en-us/ clinical-research/research-library/permobil-white-paper-a-systematic-review-of-theevidence-on-power-assist-devices
- Sprigle, S., & Huang, M. (2020). Manual wheelchair propulsion cost across different components and configurations during straight and turning maneuvers. Journal of rehabilitation and assistive technologies engineering, 7, 2055668320907819.
- Sprigle, S. (2023). Measure It: Proper Wheelchair Fit Is Key to Ensuring Function while Protecting Skin Integrity. Advances in Skin & Wound Care, 36(8), 404-413.
- Tefertiller C, Jones J, Sevigny M, Dahlin M. Manual Wheelchair Configuration in Unilateral Upper- and Lower-Extremity Propulsion: A Randomized Crossover Study to Assess Effects of Rear Wheel Axle Position and Frame Type. Arch Phys Med Rehabil. 2023 Aug;104(8):1188-1194. doi: 10.1016/j.apmr.2023.03.014. Epub 2023 Apr 5. PMID: 37024004.
- University of Pittsburgh. Fact Sheets on Wheelchair Standards. https://www. wheelchairstandards.pitt.edu/fact-sheets

